
Project Name: [Your Project Name]

Owner/Lead: [Your Name]

Start Date: [MM/DD/YYYY]

Target Launch: [MM/DD/YYYY]

Status: [Planning / In Progress / On Hold / Completed]

[One-sentence statement of what you're building and why it matters]

[What pain point or opportunity are you solving?]

[High-level description of your solution - 2-3 sentences]

[Outcome 1 - e.g., "Launch SDK with 1000+ npm downloads by Q1"]

[Outcome 2 - e.g., "Secure partnership with 3+ ecosystem projects"]

[Outcome 3 - e.g., "Generate $50K+ in early revenue/partnerships"]

Metric 30 Days 60 Days 90 Days Owner

[Metric 1] [Target] [Target] [Target] [Person]

[Metric 2] [Target] [Target] [Target] [Person]

[Metric 3] [Target] [Target] [Target] [Person]

[Metric 4] [Target] [Target] [Target] [Person]

Development Velocity: Story points completed per sprint

Quality: Test coverage %, defect escape rate

Timeline Adherence: % of sprints completed on schedule

ROI: [Business value delivered] / [Cost invested]

Project Plan Template

1. Executive Summary

Project Vision

Problem Statement

Solution Overview

Expected Outcomes

2. Project Objectives & Success Metrics

Primary Objectives

Objective 1 with measurable criteria

Objective 2 with measurable criteria

Objective 3 with measurable criteria

Success Metrics (30-60-90 Days)

Key Performance Indicators (KPIs)

3. Scope Definition

In Scope

Feature/Component 1

Feature/Component 2

Feature/Component 3

Deliverable 1

Deliverable 2

[Brief narrative of system design - how components interact]

Figure 1: High-level system architecture showing key components and data flows

Component Purpose Technology Stack Owner

[Component 1] [What it does] [Tech] [Person]

[Component 2] [What it does] [Tech] [Person]

[Component 3] [What it does] [Tech] [Person]

[Component 4] [What it does] [Tech] [Person]

Table 1: Key system components and technology decisions

ADR-001: [Decision Title]

Status: [Proposed / Accepted / Deprecated]

Context: [Why this decision was needed]

Decision: [What you chose and why]

Consequences: [Positive and negative impacts]

Trade-offs: [What you gave up]

ADR-002: [Decision Title]

Status: [Proposed / Accepted / Deprecated]

Context: [Why this decision was needed]

Decision: [What you chose and why]

Consequences: [Positive and negative impacts]

Trade-offs: [What you gave up]

Out of Scope

What is explicitly NOT included

Future phase considerations

Third-party integrations not in MVP

Assumptions

Assumption 1 - e.g., "Team has Solidity ex

Assumption 2 - e.g., "No major regulatory changes in target m

Assumption 3 - e.g., "Third-party APIs remain

Constraints

Budget: $[Amount] allocated•

Timeline: [X weeks/months] to MVP•

Technical: [Infrastructure limitations, tech debt]•

Regulatory: [Compliance requirements if applicable]•

4. System Architecture & Technical Design

Architecture Overview

High-Level System Diagram

Key Components

Architecture Decisions (ADR - Architecture Decision Records)

Quality Attributes & Non-Functional Requirements

Performance: [e.g., "API response time < 200ms for 95th percentile"]•

Security: [e.g., "Smart contracts audited before mainnet deployment"]•

Scalability: [e.g., "Support 10K concurrent users by month 6"]•

Maintainability: [e.g., "80%+ test coverage, documentation for all APIs"]•

Reliability: [e.g., "99.5% uptime SLA"]•

5. Project Phases & Timeline

Phase Duration Key Deliverables Dependencies Gate Criteria

Phase 1: Foundation [Weeks 1-2] [List] None [Success criteria]

Phase 2: MVP Dev [Weeks 3-8] [List] Phase 1 complete [Success criteria]

Phase 3: Testing [Weeks 9-10] [List] MVP dev complete [Success criteria]

Phase 4: Launch [Week 11] [List] Testing passed [Success criteria]

Phase 5: Scale [Weeks 12+] [List] Launch successful [Success criteria]

Table 2: Project phases with timelines and gate criteria

Figure 2: Critical path analysis showing dependency chains and slack time

Role Name/TBD Allocation Key Responsibilities

Project Lead [Name] 100% Overall execution, stakeholder mgmt

Technical Lead [Name] 100% Architecture, technical decisions, code review

Smart Contract Dev [Name] 100% Smart contract development, audits

Frontend Engineer [Name] 100% UI/UX implementation

DevOps Engineer [Name] 50% Infrastructure, CI/CD, monitoring

QA Lead [Name] 75% Testing strategy, test automation

Table 3: Team composition and responsibilities

Risk Probability Impact Severity Mitigation Owner

[Risk 1] [H/M/L] [H/M/L] [H/M/L] [Plan] [Person]

[Risk 2] [H/M/L] [H/M/L] [H/M/L] [Plan] [Person]

[Risk 3] [H/M/L] [H/M/L] [H/M/L] [Plan] [Person]

Table 4: Risk register with mitigation strategies

Technical Risks

Smart contract vulnerabilities or bugs

Third-party API dependencies and outages

Scalability bottlenecks under load

Integration complexity with existing systems

Technology stack immaturity

Organizational Risks

Phase Breakdown

Critical Path

6. Resource Planning

Team Structure

Skills Gap Analysis

: Current level: [Gap], Plan: [How to fill]Required skill

: Current level: [Gap], Plan: [How to fill]Required skill

: Current level: [Gap], Plan: [How to fill]Required skill

Budget Allocation

Personnel: $[Amount] ([X]% of total)•

Infrastructure & Tools: $[Amount] ([X]% of total)•

External Services: $[Amount] ([X]% of total)•

Contingency: $[Amount] ([X]% of total)•

Total Budget: $[Amount]•

7. Risk Management

Risk Register

Risk Categories for Technical Projects

Key personnel turnover

Scope creep from stakeholders

Budget overruns

Competing priorities for team time

Communication breakdowns

Market/External Risks

Regulatory changes (especially for blockchain)

Competitive product launches

Market conditions changing

Adoption challenges

Partnership dependencies

Methodology Mix:

Sprints: 2-week sprints for feature development (Scrum)

Kanban Board: For bugs, technical debt, and operational work

Architecture Reviews: Monthly deep-dives on major components

Security Reviews: Before every mainnet/production deployment

Figure 3: Development workflow from ideation through deployment

Stakeholder Frequency Format Owner

Core Team Daily Standup + Slack Tech Lead

Management Weekly Written summary Project Lead

Stakeholders Bi-weekly Demo + Metrics Project Lead

Executive Sponsor Monthly Strategic sync Project Lead

Table 5: Communication cadence and formats

Development Metrics

Sprint velocity (story points/week)

Burndown progress (planned vs. actual)

Code coverage (%) and test pass rate (%)

Deployment frequency and lead time

Contingency Plans

If risk X occurs, then action Y will be taken

If risk X occurs, then action Y will be taken

If risk X occurs, then action Y will be taken

8. Execution & Management Strategy

Development Methodology

Execution Workflow

Weekly Cadence

Monday (9-10 AM): Sprint planning + week priorities sync•

Daily (2 PM): 15-min standup (blockers, progress, help needed)•

Wednesday (4 PM): Mid-week sync (adjust scope if needed)•

Friday (3-4 PM): Sprint review + retrospective + metrics analysis•

Ad-hoc: Security/architecture reviews when needed•

Communication Plan

Quality Assurance Strategy

Unit Testing: Minimum 80% code coverage with automated tests•

Integration Testing: Test all component interactions before release•

Security Testing: Code audits, penetration testing for smart contracts•

Performance Testing: Load testing to verify scalability targets•

User Acceptance Testing: Beta users validate feature requirements•

Automated Deployment: CI/CD pipelines to catch issues early•

9. Monitoring, Metrics & Reporting

Monitoring Dashboard (Real-Time)

Defect escape rate (bugs found in production)

Operational Metrics

System uptime/availability (%)

API response time (milliseconds)

Transaction success rate (%)

Error rates by component

Business Metrics

User adoption/signups

Transaction volume

Revenue/partnerships enabled

Community engagement (GitHub stars, Discord members)

Week of [Date]

Accomplishments

[Completed deliverable 1]

[Completed deliverable 2]

[Milestone achieved]

Current Blockers

[Blocker 1 - impact and resolution plan]

[Blocker 2 - impact and resolution plan]

Metrics Summary

Sprint velocity: [#] story points

Test coverage: [#]%

Deployment frequency: [#] deployments this week

On-time delivery: [#]% of planned work completed

Next Week Priorities

[Priority 1]

[Priority 2]

[Priority 3]

Risks & Changes

[New risk or scope change with mitigation]

Investment Costs

Development costs: $[Amount]

Infrastructure/tools: $[Amount]

External services (audits, etc.): $[Amount]

Total: $[Amount]

Business Value Metrics (at 30-60-90 days)

Value Stream Measure 30 Days 60 Days 90 Days

User Adoption Active users [#] [#] [#]

Transaction Volume Txns/week [#] [#] [#]

Revenue $ [Amount] [Amount] [Amount]

Developer Adoption npm downloads [#] [#] [#]

Partnership Value Deals enabled [#] [#] [#]

Table 6: ROI tracking across key business metrics

Weekly Status Report Template

10. ROI & Value Realization

ROI Framework

[Target break-even point - when cumulative revenue exceeds investment]

Month 1: Launch MVP, validate product-market fit

Month 2: Scale user base, optimize based on feedback

Month 3: Achieve profitability targets or secure expansion funding

Decision Type Authority Escalation Path

Feature prioritization Product Owner Sponsor

Technical architecture Technical Lead Sponsor

Budget changes > 10% Sponsor [Board/Finance]

Scope changes Steering Committee [Executive]

Timeline slips > 1 week Project Lead + Sponsor [Executive]

Table 7: Decision authority and escalation paths

Phase Gate Review (End of each phase)

Before proceeding to next phase, confirm:

[] All planned deliverables completed

[] Quality metrics meet or exceed targets

[] No critical blockers remain

[] Team capacity available for next phase

[] Risk mitigations are effective

[] Stakeholder satisfaction is adequate

[] Budget remaining supports next phase

Monthly Retrospectives

What went well?

What could be improved?

What will we change next month?

Metrics-Driven Optimization

Analyze velocity trends and capacity planning

Track defect patterns and improve testing

Measure deployment frequency and aim for continuous delivery

Monitor customer feedback and product improvements

Break-Even Analysis

Value Realization Timeline

11. Governance & Decision-Making

Steering Committee

Sponsor/Executive: [Name] - Final approval authority•

Product Owner: [Name] - Feature prioritization•

Technical Lead: [Name] - Technical decisions•

Project Lead: [Name] - Execution oversight•

Decision Authority Matrix

Gate Review Checklist

12. Lessons Learned & Documentation

Post-Launch Documentation

Architecture Decision Records (ADRs): Rationale for all major technical choices•

API Documentation: Auto-generated + examples•

Operations Runbook: How to deploy, monitor, troubleshoot•

Lessons Learned Report: What worked, what didn't, improvements for next iteration•

Code Comments & README: Self-documenting code for future maintainers•

Continuous Improvement

ADR: Architecture Decision Record

API: Application Programming Interface

CI/CD: Continuous Integration/Continuous Deployment

KPI: Key Performance Indicator

MVP: Minimum Viable Product

QA: Quality Assurance

ROI: Return on Investment

SLA: Service Level Agreement

UAT: User Acceptance Testing

Project Management

Jira or Linear: Sprint planning and issue tracking

Notion: Documentation and knowledge base

GitHub: Code repository and CI/CD

Monitoring & Analytics

Datadog or New Relic: Application performance monitoring

Grafana: Dashboard and visualization

Sentry: Error tracking

Architecture & Documentation

Draw.io or Lucidchart: Diagrams and flowcharts

Confluence: Collaborative documentation

Postman: API documentation and testing

[Insert Gantt chart or timeline visualization showing all phases, milestones, and dependencies]

Document Version: 1.0

Last Updated: [Today's Date]

Next Review Date: [Date]

Document Owner: [Your Name]

Appendix A: Glossary

Appendix B: Tools & Resources

Appendix C: Project Timeline Example

http://draw.io/

