TECHNICAL EXECUTION WORKFLOW & TECH STACK SELECTION
Document Type: Technical Specification & Development Plan
Project: [Your Project Name]
Owner: Technical Lead / CTO
Created: January 20, 2026
Status: Comprehensive Technical Reference
Executive Summary: Your Technical Foundation
This document provides a complete workflow for technical execution covering:
- Tech Stack Selection Framework - How to choose languages, frameworks, databases, hosting
- System Architecture Patterns - Which patterns suit your use case (microservices, monolith, serverless)
- Development Workflow - Code organization, review process, testing, deployment
- System Design & Performance - Scalability, reliability, security by design
- Development Standards - Coding practices, documentation, technical debt management
- CI/CD & Version Control - Git workflows, automated testing, deployment pipelines
- Team & Execution - Agile methodologies, sprint cadence, communication
PART 1: TECH STACK SELECTION FRAMEWORK
Step 1: Define Your Constraints (START HERE)
Before choosing ANY technology, answer these questions:
| Constraint | Your Answer | Impact |
|---|---|---|
| Team Size & Timeline | How many engineers? What's your runway? | Determines complexity ceiling; solo founder ≠ 50-person team |
| Current Expertise | What languages does your team know? | Hiring cost & velocity; popular languages have better tooling and community support |
| Product Stage | MVP vs. Scale vs. Enterprise? | MVP = speed; Scale = maintainability; Enterprise = compliance |
| Scale Horizon | 1K users? 1M users? Real-time? | Determines architecture: monolith vs. microservices |
| Compliance Needs | Healthcare? Finance? Data privacy? | Adds 20-30% complexity & cost |
| Budget | Bootstrapped? Funded? Enterprise? | Determines cloud provider, tools, team size |
Step 2: Make Architecture-Level Decisions (FOUNDATION)
Architecture Pattern Selection Matrix:
| Pattern | Best For | Complexity | Team Size | Time to Deploy | Scalability | Cost |
|---|---|---|---|---|---|---|
| Monolithic | MVP, simple domains, <5M users | Low | 1-10 people | Fast (weeks) | Moderate | Low |
| Microservices | Complex domains, 10M+ users, fast iteration | High | 10+ people | Slow (months) | High | Medium |
| Serverless | Event-driven, variable load, unpredictable traffic | Low | 5+ people | Fast (weeks) | Automatic | Variable |
| Layered/N-Tier | Enterprise, regulatory, stable requirements | Moderate | 5-20 people | Moderate | Moderate | Low-Medium |
| Event-Driven | Real-time, decoupled components, streaming data | Moderate | 5-10 people | Moderate | High | Medium |
| CQRS | Complex queries, read-heavy workloads, event sourcing | High | 10+ people | Slow | High | Medium-High |
Decision: Which Pattern?
- Building distributed systems? → Microservices or Serverless (decoupled, scalable services)
- SaaS product? → Monolith initially, evolve to microservices at 10M users
- Real-time system? → Event-driven or serverless with WebSockets
- Compliance-heavy? → Layered architecture (clear separation of concerns)
Step 3: Technology Stack Decision Framework
Layer-by-Layer Selection Process:
Layer 1: LANGUAGE & RUNTIME
| Use Case | Recommended | Why | Pros | Cons |
|---|---|---|---|---|
| Web/API/Backend | TypeScript + Node.js | Ecosystem, team availability | Rich libraries, fast development | Performance not optimal for CPU-heavy |
| Data Processing/ML | Python + FastAPI | Industry standard, data libraries | Best data/ML ecosystem | Slower, harder to scale |
| Systems/Performance | Rust | Safe, fast, memory-efficient | 40% lower cloud costs, safety guarantees | Steep learning curve, slower to build |
| Enterprise/Java | Java/Kotlin + Spring | Enterprise standard, mature | Strong enterprise ecosystem | More verbose, slower iteration |
| CLI Tools & DevOps | Go or Rust | Fast compilation, easy distribution | Simple concurrency, blazing fast | Smaller ecosystem |
| Frontend | TypeScript + React/Vue/Svelte | Ecosystem dominance, component reusability | Great dev experience, huge talent pool | JavaScript fragmentation |
DECISION TREE FOR YOUR PROJECT:
Text Decision Tree (Alternative):
Your Tech Stack Selection
1. PRIMARY LANGUAGE?
├─ Web/API/SaaS: TypeScript + Node.js (default for 2026)
├─ Data-Heavy: Python + FastAPI + TypeScript bridge
├─ Enterprise: Java/Kotlin + Spring Boot
└─ Systems: Go or Rust (infrastructure)
2. DATABASE?
├─ Relational (SQL): PostgreSQL (default, 95% of cases)
├─ NoSQL (unstructured): MongoDB (only if you have reason)
├─ Search/Vector DB: Elasticsearch or pgvector (PostgreSQL) (if needed)
├─ Cache: Redis (for sessions, rate limiting)
└─ Data Warehouse: DuckDB or BigQuery (analytics)
3. HOSTING & INFRASTRUCTURE?
├─ Serverless: Vercel or Cloudflare (global, lowest ops)
├─ Regional: Render or Railway (simple, startup-friendly)
├─ Self-Managed: AWS, Azure, GCP (most control, complex)
└─ Message Queue: RabbitMQ or Redis (if needed)
4. AUTHENTICATION?
├─ Build vs Buy: BUY (Clerk, Auth0, Supabase)
└─ Never build auth from scratch
5. MONITORING & OBSERVABILITY?
├─ APM: Datadog or New Relic
├─ Error Tracking: Sentry
├─ Logs: Loggly or Papertrail
└─ Metrics: Prometheus + Grafana
Step 4: Your Recommended Tech Stack (2026 Best Practice)
For SaaS/Web Product:
Frontend:
├─ React 18+ or Vue 3+ (TypeScript required)
├─ Next.js 14+ or SvelteKit (meta-framework)
├─ Tailwind CSS (styling)
├─ Zustand or Pinia (state management)
└─ Testing: Vitest + Playwright
Backend:
├─ Node.js 20+ LTS (runtime)
├─ TypeScript 5.2+ (language)
├─ Next.js API Routes or Express/Fastify (framework)
├─ Prisma or Drizzle (ORM)
├─ PostgreSQL 15+ (database)
├─ Redis (caching + sessions)
└─ Testing: Jest + Supertest
DevOps & Deployment:
├─ Docker (containerization)
├─ GitHub Actions (CI/CD)
├─ Vercel/Render (hosting)
├─ Terraform or Pulumi (IaC)
└─ Monitoring: Datadog + Sentry
Quality & Security:
├─ ESLint + Prettier (code quality)
├─ GitHub code scanning (dependencies)
├─ OWASP testing (security)
└─ SonarQube (code coverage)
For Enterprise/Java Project:
Core Stack:
├─ Java 17+ or Kotlin (language)
├─ Spring Boot (framework)
├─ Maven or Gradle (build tool)
└─ PostgreSQL or Oracle (database)
Integration:
├─ REST APIs (Spring Web)
├─ Message Queues (RabbitMQ, Kafka)
└─ Service Discovery (Consul, Eureka)
Infrastructure:
├─ Docker + Kubernetes (containerization)
├─ CI/CD (Jenkins, GitLab CI)
└─ Monitoring (Prometheus, Grafana)
For Data Processing Project:
Core Framework:
├─ Python 3.11+ (for data processing)
├─ FastAPI (web framework)
├─ TypeScript/Node.js (APIs)
├─ PostgreSQL + Redis (data storage)
└─ Elasticsearch (search/analytics)
Data Stack:
├─ Pandas + NumPy (data manipulation)
├─ Apache Spark (big data processing)
├─ Jupyter Notebooks (analysis)
└─ Airflow (workflow orchestration)
Infrastructure:
├─ Docker + Kubernetes (deployment)
├─ Redis (caching & queues)
└─ Data warehouses (if needed)
Step 5: Technology Selection Decision Checklist
Before committing to any technology, verify:
- Ecosystem: Mature libraries? Large community? Documentation available?
- Hiring: Can you hire developers in your market for this tech?
- Maintenance: Will this still be relevant in 3-5 years?
- Scaling: Can this handle 10x your current needs without rewrite?
- Cost: Cloud costs, license fees, developer hourly rates?
- Security: Is this proven secure? Regular updates? Known vulnerabilities?
- DevOps: Easy to deploy, monitor, debug? Good tooling?
- Team Fit: Does your team already know it or have capacity to learn?
PART 2: SYSTEM ARCHITECTURE DESIGN PATTERNS
Recommended Pattern: Layered Monolith with Event-Driven Async Tasks
Why this pattern for most projects:
- 80% of successful startups use this approach initially
- Fast to build, simple to deploy, easy to debug
- Scales to 10M+ users before architectural change needed
- Easy to hire for (team knows the pattern)
Architecture Diagram: Production-Ready Layered System
┌─────────────────────────────────────────────────────────────────┐
│ CLIENT LAYER │
│ ┌──────────────┐ ┌──────────────┐ ┌──────────────┐ │
│ │ Web App │ │ Mobile App │ │ CLI Tool │ │
│ │ (React) │ │ (React) │ │ (Node.js) │ │
│ └──────────────┘ └──────────────┘ └──────────────┘ │
└───────────┬──────────────────────┬──────────────────────────────┘
│ │
▼ ▼
┌─────────────────────────────────────────────────────────────────┐
│ API GATEWAY / CDN │
│ ┌─────────────────────────────────────────────────────────┐ │
│ │ Cloudflare / Vercel Edge Network │ │
│ │ ├─ Request routing │ │
│ │ ├─ Rate limiting │ │
│ │ ├─ DDoS protection │ │
│ │ └─ Caching (static assets) │ │
│ └─────────────────────────────────────────────────────────┘ │
└──────────────┬──────────────────────────────────────────────────┘
│
▼
┌─────────────────────────────────────────────────────────────────┐
│ APPLICATION LAYER │
│ ┌───────────────────────────────────────────────────────┐ │
│ │ REST API / GraphQL Endpoint (Next.js or Express) │ │
│ │ ├─ Authentication & Authorization │ │
│ │ ├─ Input validation (Zod/Joi) │ │
│ │ ├─ Rate limiting middleware │ │
│ │ └─ Error handling & logging │ │
│ └───────────────────────────────────────────────────────┘ │
└──────────┬──────────────────────────────────────────────────────┘
│
┌───────┼───────┐
│ │ │
▼ ▼ ▼
┌──────────────────────────────────────────────────────────────┐
│ BUSINESS LOGIC LAYER │
│ ┌──────────────┐ ┌──────────────┐ ┌──────────────┐ │
│ │ User │ │ Agent │ │ Transaction │ │
│ │ Service │ │ Service │ │ Service │ │
│ └──────────────┘ └──────────────┘ └──────────────┘ │
│ ┌──────────────┐ ┌──────────────┐ │
│ │ Auth │ │ Webhook │ │
│ │ Service │ │ Service │ │
│ └──────────────┘ └──────────────┘ │
└──────────┬──────────────────────────────────────────────────┘
│
▼
┌──────────────────────────────────────────────────────────────┐
│ DATA LAYER (ORM/DAL) │
│ ┌───────────────────────────────────────────────────────┐ │
│ │ Prisma ORM / Drizzle │ │
│ │ ├─ Type-safe database access │ │
│ │ ├─ Query builder │ │
│ │ ├─ Migration management │ │
│ │ └─ Relationship loading (N+1 prevention) │ │
│ └───────────────────────────────────────────────────────┘ │
└──────────┬──────────────────────────────────────────────────┘
│
┌───────┼─────────┬──────────┐
│ │ │ │
▼ ▼ ▼ ▼
┌────────────┐ ┌──────────┐ ┌────────┐ ┌──────────────┐
│PostgreSQL │ │ Redis │ │ Vector │ │Blockchain │
│ Database │ │ Cache & │ │Database│ │RPC Provider │
│ │ │ Sessions │ │(pgvect)│ │(Alchemy) │
└────────────┘ └──────────┘ └────────┘ └──────────────┘
Cross-Cutting Concerns (All Layers):
┌─────────────────────────────────────────┐
│ SECURITY & AUTHORIZATION │
│ ├─ JWT tokens & refresh logic │
│ ├─ Role-based access control (RBAC) │
│ ├─ Rate limiting │
│ ├─ Input sanitization │
│ └─ Audit logging │
└─────────────────────────────────────────┘
┌─────────────────────────────────────────┐
│ OBSERVABILITY (Logging, Metrics, APM) │
│ ├─ Structured logging (JSON) │
│ ├─ Performance metrics (Prometheus) │
│ ├─ Distributed tracing (OpenTelemetry)│
│ ├─ Error tracking (Sentry) │
│ └─ Real-time dashboards (Datadog) │
└─────────────────────────────────────────┘
┌─────────────────────────────────────────┐
│ ASYNC PROCESSING & EVENTS │
│ ├─ Message queue (Bull, RabbitMQ) │
│ ├─ Event publishing (Node.js EventEmit)│
│ ├─ Webhooks (outgoing events) │
│ ├─ Scheduled tasks (node-cron) │
│ └─ Dead letter queues (DLQ) │
└─────────────────────────────────────────┘
┌─────────────────────────────────────────┐
│ CACHING STRATEGY │
│ ├─ HTTP caching (CDN, Browser) │
│ ├─ Database query cache (Redis) │
│ ├─ Session storage (Redis) │
│ ├─ Rate limit tracking (Redis) │
│ └─ Invalidation strategy │
└─────────────────────────────────────────┘
Key Architecture Decisions (ADRs)
ADR-001: Monolith vs. Microservices Decision
Status: ACCEPTED
When Monolith is Right:
- Team < 10 engineers
- Single business domain (no clear service boundaries)
- <5M MAU (monthly active users)
- MVP or early-stage product
- Shared database is acceptable
When to Migrate to Microservices:
- Team > 15 engineers with clear team ownership
- Multiple independent domains (users, billing, agents, analytics)
-
10M MAU with complex scaling requirements
- Different parts need different tech stacks
- You've documented the seams clearly
Our Decision: Start monolithic, migrate to microservices only when pain becomes clear
ADR-002: REST vs. GraphQL
Status: ACCEPTED
Decision: REST API for MVP, GraphQL as optional addition
REST API Advantages:
- Simpler caching (HTTP-based)
- Better for mobile (less over-fetching)
- Industry standard
- Great tooling & documentation
- Easier to version
GraphQL Advantages:
- No over-fetching
- Single endpoint
- Great for complex queries
- Better developer experience
Recommendation: Start with REST. If clients constantly over-fetch or you need multiple device interfaces, add GraphQL layer without removing REST.
ADR-003: Database: PostgreSQL or MongoDB?
Status: ACCEPTED: PostgreSQL
Decision: PostgreSQL for 95% of cases in 2026
PostgreSQL Wins Because:
- ACID transactions (data integrity)
- Rich data types (JSON, arrays, custom types)
- pgvector extension (AI embeddings)
- Mature ecosystem
- Scales to billions of rows
- Better with ORMs (Prisma, Drizzle)
- Open-source & free
MongoDB Only If:
- Truly schema-less data (rare)
- You need massive horizontal scaling (>10B documents)
- Your data is naturally hierarchical with deep nesting
ORM Choice: Prisma (best DX) or Drizzle (most control)
ADR-004: Hosting: Serverless vs. Containers vs. Traditional VPS
Status: ACCEPTED
Decision Matrix:
| Scenario | Best Choice | Why |
|---|---|---|
| Unpredictable traffic (0-1000 req/s variance) | Serverless (Vercel) | Auto-scales, pay-per-request |
| Steady, predictable traffic | Regional (Render, Railway) | Cheaper, simpler ops |
| Compute-intensive (video processing, ML) | Containers (AWS ECS) | Better for long-running tasks |
| Compliance-heavy (healthcare, finance) | Self-managed (AWS VPC) | Full control & audit logs |
Recommendation for Startups: Start with Vercel (global edge network) or Railway (cheap, regional). Migrate to AWS/GCP/Azure only when Costs require self-optimization.
PART 3: DEVELOPMENT WORKFLOW & STANDARDS
Code Organization (Project Structure)
For Next.js / Full-Stack Project:
project-root/
├── app/ # Next.js app directory
│ ├── api/ # API routes
│ │ ├── auth/
│ │ ├── agents/
│ │ ├── users/
│ │ └── webhooks/
│ ├── (auth)/ # Route groups
│ │ ├── login/
│ │ └── signup/
│ ├── dashboard/ # Protected routes
│ ├── layout.tsx # Root layout
│ └── page.tsx # Home page
│
├── src/
│ ├── components/ # Reusable React components
│ │ ├── common/ # (Header, Footer, etc.)
│ │ ├── features/ # Feature-specific components
│ │ └── ui/ # UI library (Button, Modal, etc.)
│ │
│ ├── lib/ # Utility functions
│ │ ├── auth.ts # Authentication logic
│ │ ├── db.ts # Database client
│ │ ├── hooks.ts # Custom React hooks
│ │ └── utils.ts # Helper functions
│ │
│ ├── services/ # Business logic
│ │ ├── agents.ts # Agent service
│ │ ├── users.ts # User service
│ │ ├── transactions.ts # Transaction service
│ │ └── webhooks.ts # Webhook service
│ │
│ ├── types/ # TypeScript types & interfaces
│ │ ├── agent.ts
│ │ ├── user.ts
│ │ ├── api.ts # API request/response types
│ │ └── database.ts # Database models
│ │
│ ├── middleware/ # Express-style middlewares
│ │ ├── auth.ts
│ │ ├── validation.ts
│ │ └── errorHandler.ts
│ │
│ ├── constants/ # Configuration constants
│ │ ├── env.ts
│ │ ├── messages.ts
│ │ └── config.ts
│ │
│ └── styles/ # Global styles
│ └── globals.css
│
├── prisma/ # Database schema
│ ├── schema.prisma # ORM schema definition
│ └── migrations/ # DB migration history
│
├── __tests__/ # Test files (mirror src/ structure)
│ ├── unit/
│ ├── integration/
│ └── e2e/
│
├── .github/
│ └── workflows/ # CI/CD pipelines
│ ├── test.yml
│ ├── deploy.yml
│ └── security-scan.yml
│
├── .env.example # Environment variables template
├── tsconfig.json # TypeScript configuration
├── tailwind.config.js # Tailwind CSS configuration
├── jest.config.js # Testing configuration
├── eslint.config.js # Linting configuration
├── prettier.config.js # Code formatting
├── package.json # Dependencies
└── README.md # Project documentation
Coding Standards
TypeScript Configuration
{
"compilerOptions": {
"target": "ES2022",
"lib": ["ES2022", "dom", "dom.iterable"],
"module": "ESNext",
"moduleResolution": "bundler",
"strict": true,
"noUncheckedIndexedAccess": true,
"noImplicitAny": true,
"noImplicitThis": true,
"alwaysStrict": true,
"exactOptionalPropertyTypes": true,
"forceConsistentCasingInFileNames": true,
"skipLibCheck": true,
"resolveJsonModule": true,
"allowJs": false,
"checkJs": false
}
}
Code Style & Formatting
ESLint + Prettier Configuration:
// .eslintrc.json
{
"extends": ["next/core-web-vitals", "prettier"],
"rules": {
"no-console": ["warn", { "allow": ["warn", "error"] }],
"prefer-const": "error",
"no-var": "error",
"@typescript-eslint/explicit-function-return-types": "error",
"@typescript-eslint/no-unused-vars": "error",
"eqeqeq": ["error", "always"]
}
}
// .prettierrc
{
"semi": true,
"singleQuote": true,
"tabWidth": 2,
"trailingComma": "es5",
"printWidth": 100
}
Code Organization Best Practices
1. Single Responsibility Principle
// ❌ BAD: Service does too much
class UserService {
async createUser() { }
async sendEmail() { }
async logMetrics() { }
async validatePayment() { }
}
// ✅ GOOD: Service focused on single domain
class UserService {
async createUser() { }
async updateUser() { }
async deleteUser() { }
}
// Other concerns go to other services
class EmailService { }
class MetricsService { }
class PaymentService { }
2. Dependency Injection
// ❌ BAD: Hard-coded dependencies
class UserService {
private db = new Database();
async getUser(id: string) {
return this.db.query('SELECT * FROM users WHERE id = ?', id);
}
}
// ✅ GOOD: Dependencies injected
class UserService {
constructor(private db: Database) {}
async getUser(id: string) {
return this.db.query('SELECT * FROM users WHERE id = ?', id);
}
}
3. Type Safety with Zod (Runtime Validation)
import { z } from 'zod';
// Define schema
const CreateUserSchema = z.object({
email: z.string().email(),
name: z.string().min(1),
age: z.number().int().positive(),
});
type CreateUserRequest = z.infer<typeof CreateUserSchema>;
// Validate at runtime
async function createUser(data: unknown) {
const validated = CreateUserSchema.parse(data);
// validated is now type-safe CreateUserRequest
}
Code Review Standards
Code Review Checklist (Pull Request Requirements):
## Code Review Checklist
### Functionality
- [ ] Code does what the ticket describes
- [ ] Handles edge cases (empty data, null values, errors)
- [ ] No regressions in existing functionality
- [ ] Tests added or updated
- [ ] Database migrations included (if applicable)
### Code Quality
- [ ] Follows project conventions (naming, structure)
- [ ] No console.logs left behind (except warn/error)
- [ ] No commented-out code blocks
- [ ] No hardcoded values (use environment variables)
- [ ] DRY principle (no duplicated code)
- [ ] Single responsibility (functions do one thing)
### Performance
- [ ] No N+1 queries (check database access patterns)
- [ ] No unnecessary loops or iterations
- [ ] Caching implemented where appropriate
- [ ] Large data structures handled efficiently
### Security
- [ ] User input validated and sanitized
- [ ] No secrets/API keys committed
- [ ] SQL injection prevented (using ORM/parameterized queries)
- [ ] CORS headers configured correctly
- [ ] Authentication/authorization checked
### Testing
- [ ] Unit tests added for business logic (min 80% coverage)
- [ ] Integration tests for API endpoints
- [ ] Tests are meaningful (not just coverage-padding)
- [ ] All tests pass locally and in CI
### Documentation
- [ ] Code comments explain WHY not WHAT
- [ ] API endpoints documented (request/response examples)
- [ ] Complex logic explained with inline comments
- [ ] README updated if applicable
### DevOps & Deployment
- [ ] .env.example updated with new variables
- [ ] Database migrations tested
- [ ] Backwards compatible (no breaking changes without version bump)
- [ ] Deployment instructions clear
Version Control (Git) Workflow
Branch Strategy: Git Flow
main (production)
│
├─ hotfix/fix-bug-x ──→ (PR to main + develop)
│
develop (staging)
│
├─ feature/new-feature ──→ (PR to develop)
├─ fix/bug-name ────────→ (PR to develop)
└─ refactor/update-x ───→ (PR to develop)
Commit Message Convention (Conventional Commits)
<type>(<scope>): <subject>
<body>
<footer>
---
Types:
- feat: new feature
- fix: bug fix
- docs: documentation
- style: code style (formatting)
- refactor: code refactoring
- test: adding tests
- chore: dependencies, build config
- perf: performance improvement
Examples:
feat(auth): add JWT refresh token rotation
fix(agents): prevent N+1 query in agent list endpoint
docs(api): update endpoint documentation
refactor(services): extract common logic to base class
test(users): add test for email validation
Testing Strategy
Testing Pyramid (% of Total Tests)
/\
/ \ E2E Tests: 5%
/____\ (Critical user journeys)
/ \
/ \ Integration: 20%
/__________\ (Service interactions, API endpoints)
/ \
/ \ Unit: 75%
/________________\ (Functions, utilities, business logic)
Unit Test Example (Jest)
import { UserService } from './user.service';
import { Database } from './database';
describe('UserService', () => {
let service: UserService;
let db: jest.Mocked<Database>;
beforeEach(() => {
db = {
query: jest.fn(),
} as any;
service = new UserService(db);
});
describe('createUser', () => {
it('should create a user with valid input', async () => {
const input = { email: 'test@example.com', name: 'Test' };
db.query.mockResolvedValue({ id: '123', ...input });
const result = await service.createUser(input);
expect(result.id).toBe('123');
expect(db.query).toHaveBeenCalledWith(
expect.stringContaining('INSERT'),
expect.objectContaining(input)
);
});
it('should throw error for invalid email', async () => {
const input = { email: 'invalid', name: 'Test' };
await expect(service.createUser(input)).rejects.toThrow('Invalid email');
});
});
});
Integration Test Example (Supertest + Express)
import request from 'supertest';
import { app } from '../app';
describe('POST /api/users', () => {
it('should create a user and return 201', async () => {
const res = await request(app)
.post('/api/users')
.send({ email: 'test@example.com', name: 'Test' });
expect(res.status).toBe(201);
expect(res.body).toHaveProperty('id');
expect(res.body.email).toBe('test@example.com');
});
it('should return 400 for duplicate email', async () => {
await request(app)
.post('/api/users')
.send({ email: 'test@example.com', name: 'Test' });
const res = await request(app)
.post('/api/users')
.send({ email: 'test@example.com', name: 'Test 2' });
expect(res.status).toBe(400);
expect(res.body.error).toContain('duplicate');
});
});
PART 4: CI/CD PIPELINES & AUTOMATION
GitHub Actions Workflow: Test & Deploy
# .github/workflows/test-and-deploy.yml
name: Test and Deploy
on:
push:
branches: [main, develop]
pull_request:
branches: [develop]
jobs:
test:
name: Test
runs-on: ubuntu-latest
services:
postgres:
image: postgres:15
env:
POSTGRES_PASSWORD: postgres
options: >-
--health-cmd pg_isready
--health-interval 10s
--health-timeout 5s
--health-retries 5
steps:
- name: Checkout code
uses: actions/checkout@v4
- name: Setup Node.js
uses: actions/setup-node@v4
with:
node-version: '20'
cache: 'npm'
- name: Install dependencies
run: npm ci
- name: Lint code
run: npm run lint
- name: Check types
run: npm run type-check
- name: Run unit tests
run: npm run test:unit
env:
NODE_ENV: test
- name: Run integration tests
run: npm run test:integration
env:
DATABASE_URL: postgres://postgres:postgres@localhost:5432/test_db
- name: Upload coverage
uses: codecov/codecov-action@v3
with:
files: ./coverage/coverage-final.json
flags: unittests
name: codecov-umbrella
security:
name: Security Scan
runs-on: ubuntu-latest
steps:
- name: Checkout code
uses: actions/checkout@v4
- name: Setup Node.js
uses: actions/setup-node@v4
with:
node-version: '20'
cache: 'npm'
- name: Run npm audit
run: npm audit --audit-level=moderate
- name: Run Snyk scan
uses: snyk/actions/node@master
env:
SNYK_TOKEN: ${{ secrets.SNYK_TOKEN }}
deploy:
name: Deploy
runs-on: ubuntu-latest
needs: [test, security]
if: github.event_name == 'push' && github.ref == 'refs/heads/main'
steps:
- name: Checkout code
uses: actions/checkout@v4
- name: Deploy to production
env:
VERCEL_TOKEN: ${{ secrets.VERCEL_TOKEN }}
run: |
npm run build
npx vercel deploy --prod --token $VERCEL_TOKEN
Continuous Deployment Pipeline
┌─────────────────┐
│ Git Push │
│ (Code commit) │
└────────┬────────┘
│
▼
┌─────────────────┐
│ GitHub Actions │
│ ├─ Lint │
│ ├─ Type check │
│ └─ Test │
└────────┬────────┘
│
┌────┴────┐
│ │
▼ ▼
Success Failure → Notify Slack
│ Stop here
│
▼
┌─────────────────┐
│ Build Docker │
│ image & Push │
│ to registry │
└────────┬────────┘
│
▼
┌─────────────────┐
│ Deploy to │
│ Staging env │
└────────┬────────┘
│
▼
┌─────────────────┐
│ Smoke tests on │
│ staging │
└────────┬────────┘
│
┌────┴────┐
│ │
▼ ▼
Success Failure → Rollback
│
▼
┌─────────────────┐
│ Deploy to Prod │
│ (blue/green) │
└────────┬────────┘
│
▼
┌─────────────────┐
│ Health checks │
│ & monitoring │
└─────────────────┘
PART 5: PERFORMANCE, SCALABILITY & RELIABILITY
Performance Optimization Checklist
Frontend Performance
- Code splitting (lazy load routes)
- Image optimization (next/image, WebP)
- Remove unused CSS (Tailwind purging)
- Minify & compress assets
- Service Worker for offline support
- Core Web Vitals tracked (LCP, FID, CLS)
Backend Performance
- Database query optimization (add indexes on foreign keys, frequently filtered columns)
- N+1 query prevention (eager loading)
- Caching strategy (Redis for hot data)
- Connection pooling (prevent exhausting DB connections)
- Pagination (never return all records)
- API response compression (gzip)
Database Performance
-- Frequently accessed queries should have indexes
CREATE INDEX idx_users_email ON users(email);
CREATE INDEX idx_agents_user_id ON agents(user_id);
CREATE INDEX idx_transactions_created_at ON transactions(created_at DESC);
-- Composite indexes for multi-column filters
CREATE INDEX idx_transactions_user_date ON transactions(user_id, created_at DESC);
Scalability Architecture
Horizontal Scaling Strategy
┌─────────────────┐
│ Load Balancer │
│ (nginx/ALB) │
└────────┬────────┘
│
┌────────────────────┼────────────────────┐
│ │ │
▼ ▼ ▼
┌────────┐ ┌────────┐ ┌────────┐
│App │ │App │ │App │
│Server 1│ │Server 2│ │Server N│
└────────┘ └────────┘ └────────┘
│ │ │
└────────────────────┼────────────────────┘
│
▼
┌─────────────────┐
│ PostgreSQL │
│ (Primary + │
│ Replicas) │
└─────────────────┘
│
┌────────────────────┼────────────────────┐
│ │ │
▼ ▼ ▼
┌────────┐ ┌────────┐ ┌────────┐
│ Redis │ │ Redis │ │ Redis │
│Cache │ │Cache │ │Cache │
│(read) │ │(read) │ │(read) │
└────────┘ └────────┘ └────────┘
Database Replication Strategy
Primary (Write)
├─ Replica 1 (Read) - Real-time analytics
├─ Replica 2 (Read) - Search/indexing
└─ Replica 3 (Read) - Backup/reporting
Read queries load-balanced across replicas
Write queries → Primary only
Reliability & Fault Tolerance
Circuit Breaker Pattern (Prevent Cascading Failures)
import CircuitBreaker from 'opossum';
// Wrap external API calls
const breaker = new CircuitBreaker(
async () => {
return await externalAPI.call();
},
{
timeout: 3000, // 3 seconds
errorThresholdPercentage: 50, // Fail if 50% of calls error
resetTimeout: 30000, // Try again after 30 seconds
}
);
// If external service is down, return cached data
breaker.fallback(() => getCachedData());
// Usage in your service
async function getExternalData() {
try {
return await breaker.fire();
} catch (error) {
// Circuit is open, fallback is used
return getCachedData();
}
}
Retry Logic with Exponential Backoff
async function retryWithBackoff<T>(
fn: () => Promise<T>,
maxRetries: number = 3,
baseDelay: number = 100
): Promise<T> {
for (let i = 0; i < maxRetries; i++) {
try {
return await fn();
} catch (error) {
if (i === maxRetries - 1) throw error;
// Exponential backoff: 100ms, 200ms, 400ms...
const delay = baseDelay * Math.pow(2, i);
await new Promise(resolve => setTimeout(resolve, delay));
}
}
}
// Usage
const data = await retryWithBackoff(() => externalAPI.call(), 3, 100);
PART 6: AGILE & TEAM EXECUTION
Sprint Structure (2-Week Sprints)
Monday - Sprint Planning (90 minutes)
Agenda:
├─ Review last sprint retrospective items
├─ Discuss upcoming features/priorities
├─ Estimate story points for each ticket
├─ Assign work to team members
└─ Commit to sprint goal
Daily - Standup (15 minutes)
Each engineer (2 minutes max):
├─ What did I complete?
├─ What am I working on?
└─ Any blockers?
No problem-solving in standup (follow-up after)
Wednesday - Midweek Sync (30 minutes)
├─ Check sprint progress (burndown)
├─ Identify risks early
├─ Re-prioritize if needed
└─ Unblock anyone stuck
Friday - Sprint Review & Retro (2 hours)
Sprint Review (60 minutes):
├─ Demo completed work to stakeholders
├─ Discuss what's next
└─ Gather feedback
Sprint Retrospective (60 minutes):
├─ What went well?
├─ What could improve?
├─ What will we change next sprint?
└─ Action items for next sprint
Story Point Estimation
Fibonacci Scale: 1, 2, 3, 5, 8, 13, 21
| Points | Effort | Example |
|---|---|---|
| 1 | Trivial (< 1 hour) | Fix typo, update docs |
| 2 | Small (1-3 hours) | Change color, add validation |
| 3 | Medium (3-8 hours) | New API endpoint, bug fix |
| 5 | Large (1-2 days) | Feature with backend + frontend |
| 8 | Very large (2-3 days) | Complex feature, major refactor |
| 13+ | Too large (break into smaller tasks) | Split into multiple stories |
Velocity Tracking:
- Track story points completed per sprint
- After 3-4 sprints, you have baseline velocity
- Use velocity to plan how much work fits in next sprint
Technical Debt Management
Keep 10-20% of sprint capacity for technical debt:
Sprint Capacity: 40 points (example team)
├─ Feature work: 32 points (80%)
└─ Technical debt: 8 points (20%)
Technical debt backlog:
├─ Refactoring (extract common logic)
├─ Dependency updates (security patches)
├─ Performance improvements
├─ Test coverage gaps
└─ Documentation updates
When to Tackle Debt:
- ✅ After sprint completion (don't start mid-sprint)
- ✅ When you can't add features because of complexity
- ✅ Security vulnerabilities or performance issues
- ❌ Not during crunch periods (focus on shipping)
PART 7: DOCUMENTATION STANDARDS
Code Documentation
Self-Documenting Code
// ❌ BAD: Comments don't explain the WHY
function processUsers(u: User[]) {
return u.filter(x => x.active).map(x => ({...x, lastSeen: new Date()}));
}
// ✅ GOOD: Clear naming + minimal comments
function getActiveUsersWithUpdatedTimestamp(users: User[]): UserDTO[] {
return users
.filter(user => user.isActive)
.map(user => ({
...user,
lastSeenAt: new Date(), // Track last activity for retention analysis
}));
}
Function Documentation (JSDoc)
/**
* Creates a new AI agent and deploys to blockchain
*
* @param config - Agent configuration with parameters and strategy
* @param userId - Owner of the agent (for authorization)
* @returns Deployed agent address on blockchain
* @throws {ValidationError} If config is invalid
* @throws {DeploymentError} If blockchain deployment fails
*
* @example
* const agent = await createAndDeployAgent({
* name: 'Trading Bot',
* strategy: 'mean-reversion',
* }, userId);
*/
async function createAndDeployAgent(
config: AgentConfig,
userId: string
): Promise<string> {
// implementation
}
API Documentation
OpenAPI/Swagger Specification
openapi: 3.1.0
info:
title: [Your Product Name] API
version: 1.0.0
paths:
/api/agents:
post:
summary: Create a new AI agent
tags: [Agents]
requestBody:
required: true
content:
application/json:
schema:
type: object
properties:
name:
type: string
example: "Trading Bot"
strategy:
type: string
enum: [mean-reversion, trend-following]
responses:
'201':
description: Agent created successfully
content:
application/json:
schema:
type: object
properties:
id:
type: string
example: "agent_123"
address:
type: string
example: "0x123..."
'400':
description: Invalid request
'401':
description: Unauthorized
Architecture Documentation
README Template
# Project Name
Brief description of what this project does.
## Quick Start
### Prerequisites
- Node.js 20+
- PostgreSQL 15+
- Redis 7+
### Installation
\`\`\`bash
git clone https://github.com/...
cd project
npm install
npm run dev
\`\`\`
### Environment Variables
Copy `.env.example` to `.env.local` and update values:
\`\`\`
DATABASE_URL=postgresql://...
REDIS_URL=redis://...
JWT_SECRET=your-secret-key
\`\`\`
## Architecture
[Include architecture diagram or description]
## Development
### Running Tests
\`\`\`bash
npm run test # All tests
npm run test:unit # Unit tests
npm run test:integration # Integration tests
npm run test:coverage # With coverage report
\`\`\`
### Database Migrations
\`\`\`bash
npm run db:migrate # Run migrations
npm run db:rollback # Rollback last migration
\`\`\`
### Code Quality
\`\`\`bash
npm run lint # Check linting
npm run format # Auto-format code
npm run type-check # TypeScript validation
\`\`\`
## Deployment
[Include deployment instructions for main branch + staging]
## Contributing
[Link to CONTRIBUTING.md]
SUMMARY: Your Technical Roadmap
Week 1-2: Finalize Tech Stack
- Review architecture decision in Section 4 of project plan
- Create ADRs (Architecture Decision Records) for each major choice
- Set up development environment (Docker, local DB, etc.)
- Configure CI/CD pipelines
- Create project scaffolding with linters, formatters, tests
Week 3-8: MVP Development
- Follow coding standards and code review process
- Write unit + integration tests (80%+ coverage minimum)
- Commit code regularly (small, focused PRs)
- Run security scans (npm audit, Snyk)
- Document code with JSDoc comments
- Track technical debt in backlog
Week 9-16: Scale & Optimize
- Monitor performance with APM tools
- Implement caching and database optimization
- Add load testing before launch
- Document architecture and runbooks
- Establish on-call rotation and incidents response
- Plan for horizontal scaling
Ongoing:
- Weekly standups + 2-week sprints
- Biweekly retrospectives
- Monthly technical debt allocation
- Quarterly architecture reviews
This is your technical blueprint. Reference it constantly. Update it as you learn.
Next: Complete Section 5-12 of your project plan using these technical foundations.